Diffraction theory of Fresnel lenses encoded in low-resolution devices.
نویسندگان
چکیده
A mathematical model that describes the behavior of low-resolution Fresnel lenses encoded in any low-resolution device (e.g., a spatial light modulator) is developed. The effects of low-resolution codification, such the appearance of new secondary lenses, are studied for a general case. General expressions for the phase of these lenses are developed, showing that each lens behaves as if it were encoded through all pixels of the low-resolution device. Simple expressions for the light distribution in the focal plane and its dependence on the encoded focal length are developed and commented on in detail. For a given codification device an optimum focal length is found for best lens performance. An optimization method for codification of a single lens with a short focal length is proposed.
منابع مشابه
Diffraction theory of optimized low-resolution Fresnel encoded lenses.
A mathematical model describing the behavior of low-resolution Fresnel encoded lenses (LRFEL's) encoded in any low-resolution device (e.g., a spatial light modulator) has recently been developed. From this model, an LRFEL with a short focal length was optimized by our imposing the maximum intensity of light onto the optical axis. With this model, analytical expressions for the light-amplitude d...
متن کاملDesigning the optimal Fresnel lenses by using Zemax software
In this paper, the optimal Fresnel lenses are designed by Zemax software.The fundamental problem of the Fresnel lenses is the beam divergence, which wasresolved by decreeing the output stain diameter on the image plane. For this purpose,two types of radial and cylindrical Fresnel lenses are simulated with different groovesusing Global and Hammer optimization methods. The minimum output stain di...
متن کاملAcoustic Metamaterial Design and Applications By
We proposed an approach to construct a 2D Fresnel lenses by acoustic network. This lens iscomposed of an array of Helmholtz resonators. The resonance at individual resonators results ineffective focusing even the plate has subwavelength thickness. The FEM simulation resultspresented the ultrasonic wave propagation through the lenses together with the resultingdiffraction pat...
متن کاملDevelopment of ground-testable phase fresnel lenses in silicon
Diffractive optics, such as Phase Fresnel Lenses (PFL’s), offer the potential to achieve excellent imaging performance in the x-ray and gamma-ray photon regimes. In principle, the angular resolution obtained with these devices can be diffraction limited. Furthermore, improvements in signal sensitivity can be achieved as virtually the entire flux incident on a lens can be concentrated onto a sma...
متن کاملFresnel lenses for X-ray and Gamma-ray Astronomy
Phase Fresnel lenses have the same imaging properties as zone plates, but with the possibility of concentrating all of the incident power into the primary focus, increasing the maximum theoretical efficiency from 11% to close to 100%. For X-rays, and in particular for gamma-rays, large, diffraction-limited phase Fresnel lenses can be made relatively easily. The focal length is very long for exa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Applied optics
دوره 33 2 شماره
صفحات -
تاریخ انتشار 1994